# Physiological response of loblolly pine saplings to *L. terebrantis* in naturally regenerated habitat

John K. Mensah<sup>1</sup>, Ryan L. Nadel<sup>1</sup>, George Matusick<sup>2</sup>, Zhaofei Fan<sup>1</sup>, Mary A. Sword Sayer<sup>4</sup> and Lori G. Eckhardt<sup>1</sup>

<sup>1</sup>Forest Health Dynamics Laboratory, School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama; <sup>2</sup> The Nature Conservancy, Fort Benning, Georgia; <sup>4</sup> USDA Forest Service, Southern Research Station, Pineville, Louisiana

Forest Health Dynamics Laboratory

\*



### rest Health Dynamics Laborator

# **Background**

- Pathogen infection
  - Causes tissue occlusions and lesions
  - Clogs tracheids and vessel element
  - Interferes with water transport







School of Forestry and Wildlife Sciences, Auburn Universi

| Forest Health Dynamics Laboratory                                                                         |   |
|-----------------------------------------------------------------------------------------------------------|---|
| Objectives                                                                                                |   |
| Monitor physiological response of loblolly pine                                                           |   |
| saplings to <i>L. terebrantis</i> inoculation intensity throughout the 24 week period after inoculation.  |   |
| throughout the 24 week period after inoculation.                                                          |   |
| Determine relationships between pathogen-induced sapwood occlusion, stem hydraulic conductivity,          |   |
| inoculation intensity, and duration after inoculation                                                     |   |
| were established.                                                                                         |   |
|                                                                                                           | - |
| School of Forestry and Wildlife Sciences, Auburn University                                               |   |
|                                                                                                           |   |
| Forest Health Dynamics Laboratory                                                                         |   |
| Hypotheses                                                                                                |   |
| A positive, linear relationships would be found                                                           |   |
| between L. terebrantis inoculation intensity and both                                                     |   |
| sapwood occlusion and loss of stem hydraulic conductivity.                                                |   |
| a Loss of store hydraulic conductivity would visid o                                                      |   |
| Loss of stem hydraulic conductivity would yield a<br>decrease in fascicle-level stomatal conductivity and |   |
| more negative fascicle predawn water potentials                                                           |   |
|                                                                                                           | - |
| School of Forestry and Wildlife Sciences, Auburn University                                               |   |
|                                                                                                           |   |
|                                                                                                           |   |
| Forest Health Dynamics Laboratory                                                                         |   |
| Approach                                                                                                  |   |

- Study Area Solon Dixon Forestry Education Center Andalusia, AL
- Naturally regenerating pine stand Loblolly, Slash, long leaf
- Treatments and inoculation procedures similar to the earlier study
- Post inoculation assessment up to 24weeks

School of Forestry and Wildlife Sciences, Auburn Universit

# **Predawn Water Potential** • Five trees per treatment were randomly selected and flagged • Three fascicles per tree Excised fascicle is partly sealed in a pressure chamber • The chamber is pressurized until fluid exudes from the cut surface

# Mid-day Stomatal conductance • Porometer is calibrated and the needles are clamped in the sensor

- 2-3 readings per tree
- 5 trees per treatment







#### orest Health Dynamics Laboratory

## Hydraulic Conductance

- 10cm stem was extracted
- Connected to the set-up
- Flow rate stabilized:
  - 5- 30minutes
- Flow rate per 5minute
- 3 readings per segment
- $K_s = QL/(\Delta PA_{sw})$

School of Forestry and Wildlife Sciences, Auburn Universit

# Results – Precipitation & Temperature

| Month | Precipitation (In) | Temperature (°F) |
|-------|--------------------|------------------|
| April | 5.33               | 67.03            |
| May   | 4.15               | 73.11            |
| June  | 4.46               | 79.97            |
| July  | 8.65               | 80.91            |
| Aug   | 4.98               | 80.58            |
| Sep   | 3.66               | 78.43            |
| Oct   | 0                  | 69.81            |

School of Forestry and Wildlife Sciences, Auburn University













### orest Health Dynamics Laborator

### Conclusion

- Tissue occlusions of L. terebrantis caused a significant reduction in hydraulic conductivity through the stem of loblolly pine sapling
- Hydraulic conductivity decreased with increasing inoculum density
- Reduction of stem hydraulic conductivity did not yield a decrease in stomatal conductivity and more negative fascicle PDWP
- Fungal inoculum did not cause moisture stress within the study period

School of Forestry and Wildlife Sciences, Auburn Universit

| Forest Health Dynamics Laboratory                           |  |
|-------------------------------------------------------------|--|
| Acknowledgements                                            |  |
| Ç .                                                         |  |
| Dalton Smith                                                |  |
| Sarah Peaden Andre Color                                    |  |
| Andrea Cole Shrijana Duwadi                                 |  |
| Jessica Ahl                                                 |  |
| Charles Essien                                              |  |
| Pratima Devkota (PhD)                                       |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
|                                                             |  |
| Rayonier                                                    |  |
| AUBURN Forest Health                                        |  |
| UNIVERSITY COOPERATIVE                                      |  |
| Cahani of Farasta; and Wildlife Calaneas, Aubura Halinasibu |  |
| School of Forestry and Wildlife Sciences, Auburn University |  |